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The program Canton has as main function the simulation of a set of “pith balls” suspended from strings, 

with fixed potentials on them, computing how the balls stabilize. The name refers to John Canton, British 

scientist that studied electricity in the 1700’s. Pair of “pith balls” suspended from strings are often cited in 

old literature as “Canton balls”. 

The balls can be are approximated as point charges, or as composite groups of point charges placed at the 

corners of tetrahedrons, octahedrons, cubes, icosahedrons, dodecahedrons, or triacontahedrons. This allows 

considering the distribution of electrical charges in the surfaces of the balls, with the corresponding effects 

in capacitances and forces taken into account. 

 

Balls represented by one, eight, or thirty-two charges. 

Also available are lines, squares, toroids, a ball with a suspension line made with a string of balls, and 

programmable flat plates. 

Each ball is specified by the coordinates of the suspension point, x0, y0, z0, the length of the suspension 

string, L, horizontal and vertical rotation angles x, z, radius R and mass m. The description of the 

configuration is given in a text, one command per line: 

Bname Conductor x0 y0 z0 L Angx Angz Radius Mass 

Oname Conductor x0 y0 z0 L Angx Angz Roctahedron Mass [Rball] 

Ename Conductor x0 y0 z0 L Angx Angz Rtetrahedron Mass [Rball] 

Cname Conductor x0 y0 z0 L Angx Angz Rcube Mass [Rball] 

Iname Conductor x0 y0 z0 L Angx Angz Ricosahedron Mass [Rball] 

Dname Conductor x0 y0 z0 L Angx Angz Rdodecahedron Mass [Rball] 

Rname Conductor x0 y0 z0 L Angx Angz Rtriacontahedron Mass [Rball] 

Lname Conductor x0 y0 z0 L Angx Angz Rline Mass [Rball] 

Tname Conductor x0 y0 z0 L Angx Angz Rtoroid Mass [Rball] 

Sname Conductor x0 y0 z0 L Angx Angz Rsquare5x5 Mass [Rball] 

Qname Conductor x0 y0 z0 L Angx Angz Rsquare10x10 Mass [Rball] 

Fname Conductor x0 y0 z0 L Angx Angz Rplaque5x5 Mass [Rball] 

Gname Conductor x0 y0 z0 L Angx Angz Rplaque10x10 Mass [Rball] 

Xname Conductor x0 y0 z0 L Angx Angz Rshape5x5 Mass [Rball] 

Yname Conductor x0 y0 z0 L Angx Angz Rshape10x10 Mass [Rball] 

Zname Conductor x0 y0 z0 L Angx Angz Rshape15x15 Mass [Rball] 

Hname Conductor x0 y0 z0 L Angx Angz Rball Mass Rline_ball Mass_line 

* Comment 

.V Conductor Voltage 

.X  5 comments below determine the shape of element x *x...x 

.Y 10 comments below determine the shape of element y *x........x 

.Z 15 comments below determine the shape of element z *x.............x 

 

Units in cm, degrees, grams and volts. For objects composed of several balls, the radius of the balls can be 

specified too. If not given an optimized default value is used, which produces the right capacitance for an 

insulated ball, 40r, where r is the radius of the balls and 0 = 8.85418781710−12 is the permittivity of 

vacuum. These values are (see the appendix): 
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Tetrahedron: 0.46234592535r 

Octahedron: 0.3743113315r 

Cube: 0.3262848751r 

Icosahedron: 0.2627574554r 

Dodecahedron: 0.2074629423r 

Triacontahedron: 0.1604139269r 

For the triacontahedron, small identical balls don’t result with identical charges for an insulated main ball, 

but with two different values depending if the balls belong to the set forming an icosahedron or a 

dodecahedron. The last parameter, if present, makes all the balls identical. If a negative value is given, it is 

replaced by the value above. The default is different balls, that will have identical charges in an insulated 

ball. For these the values of the radius are 0.1598652556r (dodecahedron balls) or 0.1613508447r 

(icosahedron balls). 

Starting from the initial configuration, the program performs a simplified time-domain simulation, stopping 

after a number of steps or when the forces moving the balls fall below a given limit. Each ball belongs to a 

conductor, which can have a specified potential. If a voltage is not assigned the conductor is at 0 V. Fixed 

balls can be specified by setting the line length to zero. The strings are rigid and rotate horizontally and 

vertically in their supports, with balls following the movement of the strings.  

The program allows a three-dimensions visualization of the configuration, which can be adjusted using the 

mouse. The balls are colored according with their charge density. The right mouse button opens a menu 

with several options for visualization control, capacitance calculations and stability analysis. 

Example: 

Two to five balls with a common suspension point, with mass 0.4 g, radius 0.75 cm, string length 13.5 cm, 

at 20 kV, modeled as dodecahedrons. The input file for four balls is: 

* Four spheres 

dall1 all 0 0 0 13.5    0  10 0.75 0.4 

dall2 all 0 0 0 13.5  180  10 0.75 0.4 

dall2 all 0 0 0 13.5   90  10 0.75 0.4 

dall2 all 0 0 0 13.5  -90  10 0.75 0.4 

.V all 20000 

    

Two to five balls at 20 kV. 

 

 

 

The angles with the vertical increase with more balls, but the separation of the balls is maximum for three 

balls. More balls don’t produce stable solutions as regular polygons. 

Example: 

The file below describes six balls suspended from a common point, two of them modeled by icosahedrons. 

* Six spheres 

iall1 all 0 0 10 20    0 20 2 0.4 

ball2 all 0 0 10 20   60 20 2 0.4 

ball3 all 0 0 10 20  120 20 2 0.4 

iall4 all 0 0 10 20  180 20 2 0.4 

ball5 all 0 0 10 20  -60 20 2 0.4 

ball6 all 0 0 10 20 -120 20 2 0.4 

.V all 30000 

Balls Angle Separation cm Capacitance pF 

Two 10.7151 3.5200  1.4527 

Three 13.1605 3.8238 1.9549 

Four 14.5022 3.2809 2.3465 

Five 15.2523 2.6750 2.6447 
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6 spheres, with two models. Initial configuration and solution. 

The solution found by the program is a pentagon with one ball at the center. Initially the solution appears 

to be hexagonal, with the two icosahedrons at slightly higher angle, but it soon becomes unstable, changes 

to another unstable configuration, and finally change to the final configuration. If identical balls were used, 

the solution would stay hexagonal, but any perturbation would result in the other solution. 

Squares: 

Square arrays of balls are also available, with 5×5, 10×10, and 15×15 balls, fixed or programmable, where 

the balls can be set as present or not. For the squares, the default radius of the balls results in the capacitance 

of a square sheet, assumed as 0.4081084689 pF for the 11 cm sheet [4]: 

5×5: 0.1376686573r 

10×10: 0.06642043070r 

15×15: 0.04347756960r 

 If the option of use squares is set, the balls have the capacitance of a square sheet with uniform charge 

density [1], resulting is somewhat smaller capacitance (~0.402 pF for the 11 cm sheet), and if two squares 

are aligned vertically the elastance between uniformly charged square plates is used [1]. The variations of 

the squares, elements s, q, f, g, x, y, and z, use the same values. This allows the program to calculate with 

reasonable precision the capacitances between flat plates aligned vertically. The squares can also be used 

suspended, as the regular “pith balls”. 

The capacitances between the conductors can be calculated at the end of the analysis, allowing the use of 

the program as a general capacitance calculator. For this are especially useful the flat squares, flat squares 

with corner links (f, g), and the programmable flat squares (x, y, z), which can be used to build any structure. 

Example: 

In [1] an example is given for the capacitance between two square plates with 1 cm sides modelled by 66 

elements. The example can be reproduced in the program with the input file below. A programmable flat 

plate “y” is used. As it has 1010 balls, just 6 are used. To produce 1 cm plates, the radius is set to 0.510/6 

= 0.833 cm. 

* Parallel plates 1x1 cm, 6x6 (Reitan 1959) 

.Y 

*.......... 

*.......... 

*..xxxxxx..  
*..xxxxxx.. 

*..xxxxxx.. 

*..xxxxxx.. 

*..xxxxxx.. 

*..xxxxxx.. 

*.......... 

*.......... 

yx a 0 0 0 0 0 0 0.8333333333 0.4 

yy b 0 0 0.005 0 0 0 0.8333333333 0.4  

.V a 30000 

The separation of the plates in the description above is of 0.005 cm, and 0.5 cm in the figure. The table 

below compares the result of the program (CC) with the ones in the paper (CR). There is some difference, 

possibly due to low precision in the original calculations. 
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Example: 

A cube with 10 cm of side should have a capacitance of 7.351036 pF [2], [3]. 

A cube can be made with the programmable squares: 

* Cube 15x15x15, elements at the limits: 7.351036 pF  

.Y 

*xxxxxxxxxx 

*xxxxxxxxxx 

*xxxxxxxxxx 

*xxxxxxxxxx 

*xxxxxxxxxx 

*xxxxxxxxxx 

*xxxxxxxxxx 

*xxxxxxxxxx 

*xxxxxxxxxx 

*xxxxxxxxxx 

yx all  0 0 0  0  0 0 5.5555555555 0.4 

yx all  0 0 10 0  0 0 5.5555555555 0.4 

.Y 

*xxxxxxxxxx 

*x........x 

*x........x 

*x........x 

*x........x 

*x........x 

*x........x 

*x........x 

*x........x 

*xxxxxxxxxx 

yx all  0 0 1.1111111111   0  0 0 5.5555555555 0.4 

yx all  0 0 2.2222222222   0  0 0 5.5555555555 0.4 

yx all  0 0 3.3333333333   0  0 0 5.5555555555 0.4 

yx all  0 0 4.4444444444   0  0 0 5.5555555555 0.4 

yx all  0 0 5.5555555555   0  0 0 5.5555555555 0.4 

yx all  0 0 6.6666666666   0  0 0 5.5555555555 0.4 

yx all  0 0 7.7777777777   0  0 0 5.5555555555 0.4 

yx all  0 0 8.8888888888   0  0 0 5.5555555555 0.4 

.V all 30000 

With the option to use squares not used, the capacitance results as 7.5750 pF, with 3% of error. There is no 

sense to use squares in this problem, what would correspond to stack flat sheets with the programmed 

patterns (results in 7.5183 pF). 

 By default, the program does not calculate immediately the charge distribution in large assemblies, unless 

the corresponding option is set. This allows fast edition and visualization of the system, since the calculation 

may be slow. 

The program always calculates the complete capacitance matrix of the system. For just two conductors it 

calculates also the capacitances when both are at opposite voltages, what places the two capacitances to the 

infinity of the objects in series, in parallel with the capacitance between the objects. 

For the parallel capacitor example, for 2 mm separation the program lists: 

Capacitance matrix: 

C[a,a]=0.779825299012327 pF 

C[a,b]=-0.54784674933736 pF 

C[b,b]=0.779825299012327 pF 

Capacitances: 

C(a,b)=0.54784674933736 pF 

C(a,infinity)=0.231978549674967 pF 

C(b,infinity)=0.231978549674967 pF 

Separation cm CR pF CC pF 

0.005 17.74 17.96 

0.025 3.7892 3.8008 

0.05 2.0295 2.0323 

0.10 1.1324 1.1338 

0.20 0.6629 0.6638 

0.50 0.3750 0.3755 

1.00 0.2801 0.2805 
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Capacitance for balanced voltages=0.663836024174843 pF 

Simulation method: 

The positions of the objects are given by horizontal and vertical angles, x and z. Each object has a mass 

m, a radius r, and a string length L, fixed at the point x0, y0, z0. 

The cycle below is repeated to find a fixed-point solution: 

1) The positions of the objects are calculated: 

𝑥 = 𝑥0 + 𝐿 sin θx cos θx 
𝑦 = 𝑦0 + 𝐿 sin θz sin θx 
𝑧 = 𝑧0 − 𝐿 cos θz 

2) The elastance matrix is calculated from the geometry. V=[S]Q, where V is the voltage vector and Q the 

charge vector. The elements at the main diagonal of [S] are the inverses of the capacitances of the balls, 

1/(40r), and the others the negatives of the induction coefficients between different spheres, −1/(40dij), 

where dij is the distance between the centers of the two spheres of the pair. 

3) The capacitance matrix is calculated as the inverse of the elastance matrix. [C]=[S]-1
. 

4) The charges are calculated by Q=[C]V. 

5) The forces on the objects are calculated, electrical forces by adding QiQj/(40dij
2) for all pairs of spheres, 

and the gravitational force by mg, where g = 9.81 is the gravitational constant. They are decomposed in 

three orthogonal directions as fx,  fy, and fz. 

6) The rotational forces are calculated (case for simple balls): 

𝑓𝑟𝑥 = −𝑓𝑥 sin θx + 𝑓𝑦 cos θ𝑥  

𝑓𝑟𝑧 = (𝑓𝑥 cos θ𝑥 + 𝑓𝑦 sin θ𝑥) cos θ𝑧 + 𝑓𝑧 sin θ𝑧 

7) The angles are updated, assuming acceleration starting from rest and small movement. 

θ𝑥(𝑡0 + Δ𝑡) = θ𝑥(𝑡0) +
Δ𝑡2

2𝑚𝐿
𝑓𝑟𝑥cosec θ𝑧 

θ𝑧(𝑡0 + Δ𝑡) = 𝜃𝑧(𝑡0) +
Δ𝑡2

2𝑚𝐿
𝑓𝑟𝑧 

Singularities are avoided by limiting m and cosec z. L=0 means no movement. 

The simulation may produce apparently strange movements when the lines are vertical and becomes 

unstable with large t, consequences of the approximation in the angle update equations. 

In the case of objects composed of several balls, to calculate the rotation forces one method is to calculate 

the forces fx,  fy, and fz as above for all the balls and then calculate frx and fry considering their sums. This 

corresponds to apply all the forces at the center of the object and, although quite precise for spheres, is not 

exact and may produce artifacts as rotation for asymmetrical objects (this is used if the option “correct 

rotation forces” is not set). An exact method requires the calculation of equivalent rotational forces at the 

centers of the objects, that are then added. For each ball it is implemented as the following calculations: 

a) Distance in the horizontal plane between the ball at x1, y1, z1 and the suspension point at x0, y0, z0: 

𝑑01𝑥𝑦 = √(𝑥1 − 𝑥0)2 + (𝑦1 − 𝑦0)2. 

b) Angle between the x axis and the horizontal projection of suspension line of the ball: θ𝑥𝑒 =
arctan(𝑦1 − 𝑦0, 𝑥1 − 𝑥0). 

c) Horizontal rotation force in the ball: 𝑓𝑟𝑥𝑒 = −𝑓𝑥 sin θxe + fy cos θxe. 

d) Projection of the distance d01xy on the direction from the suspension center to the center of the object: 

𝑑01𝑧 = 𝑑01𝑥𝑦 cos( θ𝑥𝑒 − θ𝑥). 

e) Angle between the vertical and the projection: θ𝑧𝑒 = arctan(𝑑01𝑧 , 𝑧0 − 𝑧1). 

f) Vertical rotation force in the ball: 𝑓𝑟𝑧𝑒 = (𝑓𝑥 cos θ𝑥 + 𝑓𝑦 sin θ𝑥) cos θ𝑧𝑒 + 𝑓𝑧 sin θ𝑧𝑒. 

g) Equivalent horizontal rotation force at the center: 𝑓𝑟𝑥 = 𝑓𝑟𝑥𝑒𝑑01𝑥𝑦/𝐿 cosec θ𝑧. 

h) Equivalent vertical rotation force at the center: 𝑓𝑟𝑧 = 𝑓𝑟𝑧𝑒𝑑01𝑧/𝐿 cosec θ𝑧𝑒. 
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The functions cosec is limited in ±1000 to minimize problems with vertical lines or balls directly under the 

suspension point. 

Stability: 

The update equations are in the form  (t0+t) =   (t0)+t F(), forward Euler approximation for the 

solution of d/dt = F(), system of nonlinear state equations. 

The eigenvalues of the Jacobian matrix of F() can be used to verify the stability of a solution. The program 

can generate the Jacobian matrix after a precise convergence to a solution. It can be copied to a 

mathematical manipulations program external to the simulator that can compute its eigenvalues. 

All eigenvalues with negative real part mean that the solution is stable. One or more with positive real part 

mean that the solution is unstable. 

There are two eigenvalues for each sphere or object. The functions derived, numerically, are arranged in 

the Jacobian matrix in the sequence, for each object i: 

𝑓2𝑖−1 =
Δ𝑡

2𝑚𝐿
𝑓𝑟𝑥 cosec θ𝑧 

𝑓2𝑖 =
Δ𝑡

2𝑚𝐿
𝑓𝑟𝑧 

Note that t scales the Jacobian matrix and should scale the eigenvalues too. Changing its value is useful 

to evaluate the precision of the calculation. 

Example:  

 

Three balls, starting in the same plane. Initial configuration, unstable solution, and stable solution. 

A configuration with three or more balls suspended from a common point, initialized with all the balls in 

the same plane will remain in the same plane during the calculation, but the fixed-point solution found is 

unstable. For three balls, the description of the system, three balls with 2-cm radius suspended by 20-cm 

strings, with two weighting 0.5 grams, and one 0.6 grams, initially at different angles in the same plane, at 

30 kV, is: 

ball1 all 0 0 15 20 0 -50 2 0.6 

ball2 all 0 0 15 20 0  40 2 0.5 

ball3 all 0 0 15 20 0  70 2 0.5 

.V all 30000 

The solution found puts the balls at -27.1, 1.57, and 31.1. The Jacobian matrix for this solution, with t 

= 0.1, is found as: 

-0.423777  -0.000000   0.110778  -0.000000   0.312999  -0.000000  

-0.000005  -5.497393  -0.000004   3.207857  -0.000002   0.105499  

10.080389   0.000000   0.336360   0.000000 -10.416749   0.000000  

-0.000043   3.851241   0.000017  -9.841161   0.000060   3.538555  

 0.289090   0.000000  -0.105730   0.000000  -0.183360   0.000000  

 0.000002   0.126599  -0.000005   3.540159  -0.000002  -5.760000 

The eigenvalues of this matrix are: 

-13.11, -5.746, -2.238, -1.323, -0.2212, 1.274 
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The positive eigenvalue indicates instability. A perturbation in the initial angles leads to another solution, 

with the three spheres approximately in a triangle (inexact due to the different weights). The program lists 

the solution as: 

ball1 all 0 0 15 20 -34.0999384973409 -20.6657246906453 2 0.6 

ball2 all 0 0 15 20 -93.3796876856218 24.4882166609624 2 0.5 

ball3 all 0 0 15 20 25.1798106966359 24.4882166626852 2 0.5 

The Jacobian matrix is: 

-2.340475   0.000000   1.170174   1.093984   1.170301  -1.093984  

-0.000003  -3.649371   0.065899   1.082152  -0.065898   1.082152  

 1.018023   0.460048  -2.031735  -0.278453   1.013706   0.673061  

 0.163506   1.299006  -0.047858  -3.986856  -0.115620  -1.037468  

 1.017913  -0.460048   1.013822  -0.673061  -2.031729   0.278453  

-0.163489   1.299006   0.115627  -1.037468   0.047890  -3.986856 

And the eigenvalues are now all negative, indicating stability: 

-3.923, 0, -6.125, -3.179, -2.409, -2.391 

If the three spheres are made identical, the first solution puts a sphere at the vertical and the other two 

symmetrically placed at both sides of it. There is no positive eigenvalue, but there are two at 0. Any small 

asymmetry splits them in one positive and other negative. The case of multiple eigenvalues at 0 may also 

indicates instability, but not always. As other examples, four identical balls suspended from the same point 

form a stable square up to a certain voltage, when the square solution becomes unstable. Five balls can form 

a stable pentagon, also up to a certain voltage, or a square with a sphere at the center, also stable up to a 

certain voltage. The solutions as regular polygons with 6 or more identical balls suspended from a common 

point are always unstable. 

The calculation of eigenvalues may be numerically problematic. The solution must be precise, or the 

analysis may produce wrong conclusions. The force error must be set to a low value for a precise solution. 

The program allows change of the angle variation used in the numerical computation of the derivatives in 

the Jacobian matrix. Too high or too low values may generate erroneous matrices. 

For composite objects, as the equivalent rotational forces are used to calculate the movements, also just two 

variables describe each object. 

Simulation with speed considered: 

The program can also simulate the system considering the speed of the balls, in a true time-domain 

simulation. The final fixed-point solution is the same, but there are more problems with instability, due to 

the forward Euler method used, requiring a smaller t, usually 10 times smaller, and consequent larger 

number of time steps for the solution. The state of each sphere of composite object is described by two 

angles and two angular speeds. A Jacobian matrix, not implemented, would require four lines and columns 

for each object. In this case the update equations, including a damping coefficient , are: 

θ̇𝑥(𝑡0 + Δ𝑡) = θ̇𝑥(𝑡0) +
Δ𝑡

𝑚
(

𝑓𝑟𝑥

𝐿
cosec θ𝑧(𝑡0) − 𝛼θ̇𝑥(𝑡0)) 

θ̇𝑧(𝑡0 + Δ𝑡) = θ̇𝑧(𝑡0) +
Δ𝑡

𝑚
(

𝑓𝑟𝑧

𝐿
− 𝛼θ̇𝑧(𝑡0)) 

θ𝑥(𝑡0 + Δ𝑡) = θ𝑥(𝑡0) + Δ𝑡θ̇𝑥(𝑡0) 

θ𝑧(𝑡0 + Δ𝑡) = θ𝑧(𝑡0) + Δ𝑡θ̇𝑧(𝑡0) 

Appendix: 

The values of the radius of the small balls composing a ball can be found experimenting with the program 

or by analysis, by computing the capacitance matrix for the configuration of point charges and comparing 

the total capacitance with the capacitance of an insulated sphere of radius r. Some exact values are listed 

below for the simplest figures: 

Tetrahedron:   
6√6 + 32

101
𝑟 = 0.46234592535𝑟 

Octahedron:   
8√2 + 22

89
𝑟 = 0.3743113315𝑟 
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Cube:   
106√6 + 188√3 + 120√2 + 820

4827
𝑟 = 0.3262848751𝑟 

The radius of a small sphere in an nn square with side 2r representing a square sheet, assuming uniform 

charge distribution in the square, used when the options of use squares is set [2] is: 

2𝑟

4𝑛 Ln( √2 + 1)
=

1

3.525494348

2𝑟

𝑛
= 0.2836481642

2𝑟

𝑛
 

The induction coefficient, or elastance, between two aligned squares with side a separated by a distance d 

is ([1] just gives a plot): 

𝑘 =
4/𝑎2

40

∫ ∫
𝑑𝑥𝑑𝑦

√𝑥2 + 𝑦2 + 𝑑2

𝑎
2

0

𝑎
2

0

= 

 

=
1/𝑎2

40

{2𝑎Ln (
(√2√2𝑑2 + 𝑎2 + 𝑎)2

4𝑑2 + 𝑎2
) − 4𝑑 tan−1 (

√2𝑎2

4𝑑√2𝑑2 + 𝑎2
)} 
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