
UNBALANCED LATTICE SWITCHED-CURRENT FILTERS

Antônio Carlos M. de Queiroz

COPPE/EE - Electrical Engineering Program
Federal University of Rio de Janeiro

CP 68504, 21945-970 Rio de Janeiro, RJ, Brazil

ABSTRACT
This paper shows how switched-current filters can be derived from
passive filters obtained by the unbalancing of doubly terminated LC
lattice structures. The process is similar to what would be done for
the simulation of more conventional ladder structures, but the use of
lattice prototypes allows the realization in an almost physically
symmetrical structure. A comparation of sensitivity characteristics
between second-generation and component-simulation switched-
current filters is also shown.

I. INTRODUCTION

Unbalanced lattice structures are an alternative form for the
construction of passive LC doubly terminated filters [1]. For the
low-pass case, these structures can be interpreted as a different form
of creating transmission zeros in a basic ladder realizing a
polynomial filter. Instead of creating zeros locally by adding
reactive elements that form series of parallel LC tanks  with the
elements of the basic polynomial ladder, the elements are added
coupling elements at opposite sides of the ladder, always keeping
the symmetry of the structure. The passive structures can assume
several different forms [1][2][3], all convertible one to the other by
simple circuit transformations. For odd-order low-pass filters (only
low-pass filters will be discussed in this work), the network between
the terminations is composed of a series of π and T networks, one
inside the other, that can also be drawn as a three-sided pyramid or
ladder. For even-order approximations, complex symmetrical
networks presenting imaginary resistors result, that have real
equivalents formed by two identical ladders coupled by gyrators.

These structures share with the conventional LC doubly terminated
ladder structures the properties of low passband sensitivity due to
maximum power transfer, being frequently even better than
conventional ladder structures is this aspect. They can also provide
solutions for the realization of approximations where the conven-
tional ladder realization is not possible, as for filters with small
passband ripple and low stopband attenuation, particularly filters
using the inverse Chebyshev approximation. The structures are al-
ways symmetrical, a property that can simplify the layout of
integrated filters simulating the passive structures, turns them more
insensitive to gradients in process parameters or temperature, and
the symmetry by itself guarantees, in most cases, that the filter pre-
sents  low sensitivity to variations on its components [1][2].

As weak points, unbalanced lattice structures present relatively high
stopband sensitivities, due to the large number of elements involved
in the formation of the transmission zeros, and may present larger
dispersion in element values, when compared with conventional

ladder structures. For low-order filters, up to orders 5 or 6, however,
these problems are not so significant.
A synthesis procedure for these filters  was developed in [2] and al-
ready described in [1][3]. Certainly, more conventional procedures
for the design of lattice structures and their unbalancing can also be
used. A computer program that can generate unbalanced lattice
structures, and also conventional ladders, can be found in [4].

II. UNBALANCED LATTICE FILTERS

Two example filters will be used in this paper. A 5th-order elliptic
filter and a 4th-order modified elliptic filter, with a transmission zero
moved to infinity to allow an LC doubly terminated realization.
Both filters were obtained using [4]. The normalized prototype
structures are shown in Figs. 1 and 2.
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Fig. 1. Unbalanced lattice 5th-order elliptic filter. R1=1Ω,
C1=1.9928 F, Cm1=0.1068 F, C3=1.2259 F, L2=0.7096 H,

Lm2=0.6064 H.
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Fig. 2. Unbalanced lattice 4th-order modified elliptic filter. R1=1 Ω,
L1=2.0514 H, C2=1.0713 F, X1=0.2226 Ω, X2=1.4083 1/Ω.

The filters were predistorted for passband border at 1/10 of the
sampling frequency, using the bilinear transformation. With the
period of the normalized sampling frequency being T=2π/10=0.6283
seconds, the passband border of the normalized switched filters is at
1 Hz for a switching frequency of 10 Hz if the passband border of
the prototypes is at 1.034 rad/s, what corresponds to the values
listed. Both filters were designed with maximum passband
attenuation of 1 dB and minimum stopband attenuation of 40 dB.



Note that with these specifications, both filters are also realizable by
conventional ladder structures.

III. “SECOND GENERATION” SI
REALIZATIONS

Unbalanced lattice structures can be easily simulated in SI
implementation with the use of true bili near integrators. A simple
bili near integrator using a “second generation” structure is shown in
Fig. 3. It’s based on single transistor memory cells, what reduces the
sensitivity to mismatches of the structure, and is operated by two
clock signals without overlap (1, 2), but for safe operation requires
two other special clock signals (1’ , 2’) , and a point x to where
redirect the input current in phase 2, as described in [5]. It seems to
be also possible to obtain exact realizations based on Euler
integrators [5], but the structure or the unbalanced lattice is not
adequate for simple transformations leading to those realizations,
that are somewhat more sensitive to mismatches, anyway.

Note that an actual implementation would have to include some
extra transistors, as cascodes, regulated cascodes, or equivalent
structures, to increase the ratio between output and input
impedances of the SI cells. The basic structures will be used in this
work only for simplicity, as only the methods for the generation of
the basic structures are discussed.

The transfer function in z transform for the circuit in Fig. 3,
assuming input and output at phase 1, is easily obtained as eq. (1).
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Fig. 3. Basic structure for a true bilinear 2nd-generation SI integrator.

Considering the 5th-order structure in Fig. 1, a set of modified state
equations in integral form (including instantaneous couplings due to
the capacitor loops and inductor cut-sets that form the transmission
zeros) can be obtained as eqs. (2). Replacing the bili near
equivalence, eq.  (3), in eqs. (2), a series of bili near integrators are
obtained, that correspond to the possible SI realization shown in
Fig. 4. Note how the direct couplings are implemented, by using
input circuits that cancel the poles of the integrators with zeros, and
how the inverters can be grouped at the output of the integrators.
The direct couplings between V1 and V1’ require extra inverters. The
element values are obtained as eqs. (4). The values listed are widths
of the transistors, relative to the “unitary” transistors shown marked
with “1” in Fig. 4, assuming that their lengths are identical. It’s also

assumed that all transistors are biased with currents proportional to
their widths, not shown in the schematic drawing. A scaling factor
for the input current is also listed. Due to the symmetry of the
prototype, not many different widths are required in the transistors,
if dynamic range scaling is not performed in the structure. With
these values the internal signal current levels follow what happens
with voltages and currents in the passive prototype.
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Following a similar procedure, the even-order structure in Fig. 2 can
also be simulated. The resulting structure is also basically
symmetrical and similar to the odd-order case, with the only
differences being that there are no direct couplings between the
integrators and that the couplings through the gyrators in Fig. 2
appear as normal extra bili near inputs in the integrators, causing a
break in the symmetry due to the extra inverters required. The
resulting structure is shown in Fig. 5, with the element values listed
as eqs. (5). Two extra inverters appear again in the implementation
of the gyrators.

These realizations are quite good in terms of sensitivity
characteristics, because the bili near transformation maps all the
sensitivities of the passive prototype into the values of the elements
in the SI structure, with the exception of the elements realizing the
direct couplings, that appear quadruplicated. The denominators of
the integral operators are naturally correct due to the use of single
transistor memory cells. The current subtractors have no
correspondent in the passive structure, but the effect of mismatches
in them is small at the passband of the filter, because they are
responsible only for the generation of the averaging of successive
input samples at the numerator of each bili near integration, or the
creation of a transmission zero at z=−1 at each integration. They
affect more strongly the behavior of the filter around ½ of the
switching frequency, far into the stopband.



I1

21

1 1 1 1

1 1

1 1

1 1

1 1

Iout

A B 1

FE

E F

D

G G

D

G

E F

E F

CA B

A B 1

G

CA B

1'
2'

x

21

1 1

1'
2'

x

21

1 1

1'
2'

x

21

1 1

1'
2'

x

21

1 1

1'
2'

x

1 1

D

D

C

C

1 1

H

Fig. 4. Schematic normalized second generation SI implementation
for the 5th-order filter in Fig. 1.
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Equivalent structures derived from conventional ladder structures
would require less current inverters (just five and four, for the two
filters shown), would have somewhat smaller stopband sensitivities,
but at most similar passband sensitivities.

 IV. “COMPONENT-SIMULATION” SI
REALIZATIONS

This technique is described in [6] for conventional ladder filters.
Here it will be applied in the form described in [7], using modulated
signals, bili near integrations, and swapping of components with
opposite sensitivities, to obtain filters that have better sensitivity
characteristics. These filters are obtained by departing from
continuous-time versions of the passive prototypes made from
transconductors and transcapacitors, and then by the substitution of
these components, one by one, by equivalent SI structures. It’s easy
then to group all the inverters at the input of “node” blocks, and the
resulting structures have always a fixed number of inverters. The
phase-to-phase symmetry in the operation of the filters make them
work with an effective sampling frequency that is twice the
switching frequency. They operate safely with just two

nonoverlapping clock signals, because there is no switch that
conducts current all the time. The symmetry allows the swapping
phase to phase of elements that have opposite sensitivities, what
effectively eliminates mismatch errors caused by them [7]. For the
filters in Figs. 1 and 2, the corresponding realizations are shown in
Figs. 6 and 7, also with bias sources omitted. The realizations shown
swap the elements of the “voltage inverters” at the input of the
“nodes” , and some other elements that account for most of the
functionality of the terminations and gyrators that couple capacitive
and inductive elements. Fig. 8 shows the passband of the 5th-order
filter, with error limits computed by sensitivity analysis [8] shown,
were it can be seen that it’s less sensitive. The 4th-order filter (not
shown) results in some advantage to the 2nd-generation structure,
because of the several unswapped elements, corresponding to the
gyrators, that remain in the structure in Fig. 7, and of the absence of
direct couplings between the integrators in the structure in Fig. 3,
what results in better preservation of the sensitivity characteristics of
the passive prototype. For this reason, even-order unbalanced lattice
filters are particularly convenient for realizations based on
integrators.
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Fig. 5. Schematic normalized second generation SI implementation
for the 4th-order filter in Fig. 2.
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V.  CONCLUSIONS

Two different techniques for the generation of SI filters from
unbalanced lattice passive prototypes were presented. They present
low sensitivity characteristics, and are as systematically designable
as their equivalents obtained from conventional ladder structures. As
advantages they present better symmetry of structure, with less
different element values, and the unbalanced lattice can provide



solutions to filters that can’ t be realized by ladder structures. This
work also shows more complex examples of the component-
simulation SI technique, using the minimum sensitivity technique
developed in [7].
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 Fig. 6 Schematic component-simulation SI realization for the 5th-
order filter in Fig. 1.
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